Bistable optical response of a nanoparticle heterodimer: mechanism, phase diagram, and switching time.

نویسندگان

  • Bintoro S Nugroho
  • Alexander A Iskandar
  • Victor A Malyshev
  • Jasper Knoester
چکیده

We conduct a theoretical study of the bistable optical response of a nanoparticle heterodimer comprised of a closely spaced semiconductor quantum dot and a metal nanoparticle. The bistable nature of the response results from the interplay between the quantum dot's optical nonlinearity and its self-action (feedback) originating from the presence of the metal nanoparticle. The feedback is governed by a complex valued coupling parameter G = G(R) + iG(I). We calculate the bistability phase diagram within the system's parameter space: spanned by G(R), G(I), and Δ, the latter being the detuning between the driving frequency and the transition frequency of the quantum dot. Additionally, switching times from the lower stable branch to the upper one (and vice versa) are calculated as a function of the intensity of the driving field. The conditions for bistability to occur can be realized, for example, for a heterodimer comprised of a closely spaced CdSe (or CdSe/ZnSe) quantum dot and a gold nanosphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase diagrams for the precession states of the nanoparticle magnetization in a rotating magnetic field

Using the analytical and numerical solutions of the Landau–Lifshitz equation, we calculate the phase diagrams for the precession states of the nanoparticle magnetization in a rotating magnetic field. We show that there are three different scenarios for the magnetization switching. The bias magnetic field applied antiparallel to the nanoparticle magnetization strongly decreases the switching amp...

متن کامل

Effects of the Residual Stress and Bias Voltage on the Phase Diagram and Frequency Response of a Capacitive Micro-Structure

In this paper, static and dynamic behavior of a varactor of a micro-phase shifter under DC, step DC and AC voltages and effects of the residual stress on the phase diagram have been studied. By presenting a mathematical modeling, Galerkin-based step by step linearization method (SSLM) and Galerkin-based reduced order model have been used to solve the governing static and dynamic equations, resp...

متن کامل

The Effects of Strained Multiple Quantum Well on the Chirped DFB-SOA All Optical Flip-Flop

In this paper, based on the coupled-mode and carrier rate equations, a dynamic model and numerical analysis of a multi quantum well (MQW) chirped distributed feedback semiconductor optical amplifier (DFB-SOA)  all-optical flip-flop is precisely derived. We have analyzed the effects of strains of QW and MQW and cross phase modulation (XPM) on the dynamic response, and rise and fall times of the ...

متن کامل

The effect of cells' radius on optical filter output spectrum based on photonic crystals

In this article, the effect of cells' radius on the behavior of wavelength switching optical filter andthe effect of the radius of the optical filters' key characteristics such as wavelength resonance onan optical filter based on photonic crystals, have been investigated. Currently, the most commonapplied mechanism for designing optical filter based on photonic crystals is using twomechanisms s...

متن کامل

Metropolis Monte Carlo analysis of all-optical switching

This paper deals with Metropolis Monte Carlo analysis of the all-optical switching. The laser-induced magnetization dynamics with various laser pulse fluencies and durations are followed by analysis of probable transitions occurred in the sample. The calibration of Monte Carlo steps with physical time was performed by comparison with a reference dynamics described by Landau–Lifshitz–Bloch equat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 139 1  شماره 

صفحات  -

تاریخ انتشار 2013